Multip	le Laborator	y Infections	
Disease	Probable Source of Infection	Maximum Distance From Source	Number Persons Infected
Brucellosis	Centrifugation	Basement to 3 rd floor	94
Coccidioidomycosis (mammalian fungal disease)	Culture transfer solid media	2 Building floors	13
Coxsackie Virus infection	Spilled tube of infected mouse tissue on floor	5 feet (estimated)	2
Murine Typhus	Intranasal inoculation of mice	6 feet (estimated)	6
Tularemia	20 petri plates dropped	70 feet	5
Venezuelan encephalitis	9 lyophilized ampoules dropped	4 th floor stairs to 3 rd or 5 th	24

A	Particles	Diameters (μ)
Approximate Size Ranges of Various Bioaerosols	Smoke	0.001 - 0.1
	Viruses	0.015 - 0.45
	Bacteria	0.3 - 5
	Cat Ag-bearing particles	<2.5 - 15 (most >5)
	Fungal spores	2.0 - 50
	Algae cells/clusters	1 - 100+
	Protozoa	2 - 100+
	Dermatophagoides fecal pellets	~20
	Fern spores	20 - 60
	Pollen	10 - 100

roplet evaporation time and falling distance		
Diameter of droplet (µm)	Evaporation time (s)	Distance fallen before evaporation (m)
200	5.2	7.2
100	1.3	0.45
50	0.31	0.03
25	0.08	0.002

	Dronlets	Aerosols/Nuclei
	or opions	
Diameter	>5µm	< 5µm
Generation	Coughing/Sneezing	Lab techniques
Evaporation of water shell	No	Yes/not nuclei
Sedimentation	Rapidly	Slowly
Transmission	On surfaces	Air

10 ¹⁰ bacteria/ml culture - 10	min
Blender, opened at once	106
Sonicator, with bubbling	106
Pipetting, vigorous	106
Dropping culture	3 × 10 ⁵
Splash on centrifuge rotor	10 ⁵
Drop spill on zonal rotor	2 × 104
Blender, opened at 1 minute	2 × 104
pipetting, carefully	104
1 5. 7	Dimmick et al., 1973

0		Settl	Settled CFU	
RUN	Airborne CFU	Hands	Area	
1	2,040	35,800	3,700	
2	657	22,000	860	
3	2,050	14,800	1,700	
4	388	9,300	550	
5	5,110	6,900	2,100	
6	649	228,000	2,900	
Average	1,820	52,800	1,970	

What determines risk from aerosols? •size of particle (5 µm → 0.5µm) •concentration of pathogen •Risk Group of agent (R61-4) •amount of aerosol produced by the procedure •dilution of aerosol in air •survival of agent Factors affecting survival of agents in aerosols •concentration worked with •properties of the agent itself •environment i.e. temperature, relative humidity, sunlight •medium: pH, nutrients, organic material •surface: porous / non-porous

Minimizing Aerosols

- Wouldn't it be nice if we could see laboratory generated aerosols this well?
- It is often difficult to detect or measure laboratory aerosol production

Control	Comment	Example
1) Elimination	Redesign the job or substitute a substance so that the hazard is removed or eliminated.	Treating a sample before handling to eliminate biological hazard.
2) Substitution	Replace the material or process with a less hazardous one. Care should be taken to ensure the alternative is safer than the original.	Replace virulent strains with attenuated ones e.g. use Sterne strain of B.anthracis rather than a clinical one or influenza PR8 rather than a current circulating H1N1 strain.
3) Engineering controls	Use work equipment to prevent exposure to infectious agents where they cannot be avoided. Install or use additional safety machinery. Separate the hazard from the operator by methods such as enclosing or guarding of machinery/equipment. Give priority to measures which protect collectively over individual measures.	Can the work be enclosed, vented, trapped or filtered? Use Class 1, 2, 3 biological safety cabinets or individually ventilated animal cages. Use appropriately constructed facilities etc
4) Administrative controls i.e. operational controls	These are all about identifying and implementing the procedures needed to work safely. Minimise quantities used. Minimise numbers of people potentially exposed	For example: good microbiological practice, techniques and procedures. Restricted access to hazardous areas; increasing safety signage, and performing risk assessments
5) Personal protective clothing and equipment	Only after all the previous measures have been tried and found ineffective in controlling risks to a reasonably practicable level, must personal protective equipment (PPE) be used.	PPE will reduce exposure of skin, eyes and potentially lungs. If chosen, PPE should be selected and fitted by the person who uses it. Workers must be trained in the function and limitation of each item of PPE.

Good Laboratory Practice Can Help Minimize Risks from Potentially Infectious Aerosols

Examples

- Use pipetting devices
- Eliminate or reduce use of open flames and heat sources
- Use disposable inoculating loops, if available
- Do Not dispose of used pipets in vertical discard containers
- Containerize infectious materials for transport

- Use additional exposurereducing protective measures based on risk assessment
- Additional respiratory protection may be necessary in some Biosafety Level 3 laboratories
- One option is the Positive Air-purifying Respirator (PAPR)

What Types of Equipment are Available to Help Minimize Aerosol Production?

- Syringes, needles and accessories
- Blending devices
- Centrifugation tubes and accessories
- Heating and sterilization devices
- Autoclaves
- Collection systems
- Containers and flasks
- Pipetting aids and devices
- Miscellaneous equipment

Sonicators, Homogenizers and Shakers Present Special Problems

Sealed Centrifuge Bucket Assembly

- Ensure o-rings are intact
- Open only inside BSC
- Do not overfill tubes
 Check tubes for cracks

No Vertical Discard of Pipettes

- Use only • horizontal pipette discard pans
- Draw disinfectant in to the pipette and gently submerge

Safety Evaluation and Selection of Pipetting Aids

Choose Pipette Aids that:

- Will hold liquid without leakage
- . Prevent contamination of vacuum lines
- Can be cleaned and disinfected .
- Protects worker by eliminating mouth . pipetting

Summary

- All personnel in infectious disease laboratories should be aware of the hazards associated with the creation of aerosols from laboratory operations and equipment. ٠
- All manipulations of infectious materials generate
- Personnel should be familiar with procedures for minimizing the generation of potentially infectious aerosols.
- Aerosol hazards should be eliminated where possible and engineering controls and administrative procedures should be implemented to further reduce risks.
- Use of respiratory protective devices may be warranted after risk assessment in conjunction with engineering and administrative controls.
- Splashes, sprays, drips and needlesticks also need to be controlled