

# ARRANGEMENTS

Slides will shortly be on the Safety Office website under the biosafety pages and include a large number of sources of information etc. Break - 5 mins about half way through.

### TOPICS

Introduction Laboratory Acquired Infections. Aerosols/Hierarchy of Control. Biosafety Cabinets. Classification of organisms according to hazard/risk. Biosafety Levels. Hong Kong Law. Clinical waste. HKU arrangements / Risk assessment

### AIMS

On completion participants should have a general understanding of the principles of Biosafety and be be able to find further detailed information on specific topics.

Dr Mike Mackett, DipOSH, CMIOSH University of Hong Kong, Assistant Director of Safety

Biological Safety Officer 2005 - present

Experience:-Research in Molecular Virology:-PhD London, 1981; NIH USA 1983; Manchester UK 1983-2000

UK government Specialist Inspector in Biotechnology, Liverpool, 2000-2005





# What do we mean by Biosafety or Biosecurity? - a few definitions

# Biological safety - Biosafety

Aim is to reduce or eliminate accidental exposure to, or release of, infectious agents (includes Bacteria, Fungi, Viruses, Parasites and cell culture)

### Biosecurity

Aim is to protect against theft or diversion of hazardous agents.

Anthrax incident/ select agents list in US (late 90's - new list 2005) Anti-Terrorism, Crime and Security Act (2001,2007) UK (NaCTSOs) HK import export controls on specified chemical and biolgical agents



Consequences of LAI

>5000 cases with >200 deaths 2. Personal Costs - reputation etc

5. Significant inconvenience.



Laboratory Acquired Infections (LAI) "Laboratory Acquired Infections - LAI" Definition:-An infection that is acquired through laboratory or 1. Morbidity and occasional mortality - historically laboratory related activities. The infection can be:-•Symptomatic or Asymptomatic •Human or Animal - Zoonotic 3. Financial Costs - to community and University •Viral, Bacterial, Parasitic or Fungal 4. Increased State supervision - "Legislation! etc" • from Research, Teaching, Diagnostic or Production Some LAI reports include secondary infections to family members etc.

attack

|                                                                                                              | 13 01 2713                                                                                                                            |                                                                                                               |
|--------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|
| Disease                                                                                                      | Year                                                                                                                                  | Associated Incident                                                                                           |
| Brucellosis                                                                                                  | <1900                                                                                                                                 |                                                                                                               |
| Cholera                                                                                                      | <1900                                                                                                                                 |                                                                                                               |
| Diptheria                                                                                                    | <1900                                                                                                                                 |                                                                                                               |
| Tetanus (×2)                                                                                                 | 1893                                                                                                                                  | Accidental self-inoculation *1                                                                                |
| Typhoid (x3)                                                                                                 | 1885, 1886, 1893                                                                                                                      | Mouth pipetting *2                                                                                            |
| *1 Nicolas (1893) *Sur u<br>Solubies due Bacilli Nico<br>*2 Kisskalt (1915), "Labe<br>Infectionskrankheiten, | in cas de Tetanus Chez 1 "Homme par<br>Idaier " Compes Rendus der Seances c<br>pratory Infections with Typhoid Bacil<br>80 pp 145-162 | Inoculation Accident des Produits<br>le lu Societe de Biologie 5, 844-847<br>ll" Zeitschrift fur Hygeiene und |



# What can we do with the data?

### Limitations:

 i) A literature review is not an epidemiological survey
 ii) Data mostly limited to English language publications (Sevilla-Reyes - 2009 ABSA conference abstract did list 1,179 laboratory exposures in Spanish and Portugese language Journals).

Also see (article in Hebrew) :- A hantavirus killed an Israeli researcher: hazards while working with wild animals. Harefuah 2014; 153(8): 443-4, 499.

### Are the data useful?

Case studies reinforce training and program guidance





"The virus escaped from a research laboratory"

Officials stand amongst slaughtered cows at a farm near Guildford in a bid to contain the latest outbreak of the highly infectious foot-and-mouth disease.

# **Biosafety and SARS Incident in** Singapore September 2003

Report of the Review Panel on New SARS Case and Biosafety

http://www.wpro.who.int/sars/docs/pressreleases/mr 24092003.pdf

1 case from contaminated samples - Singapore

1 case from exposure to spilled material - Taiwan

4 cases from incomplete inactivation of samples - Beijing

|                   | Deals Order (#   | 1                      | Companyation Company |
|-------------------|------------------|------------------------|----------------------|
| Infectious Agent  | cases 1930-1978) | Infectious Agent       | (1979-2004)          |
| Brucella spp.     | 426              | M. tuberculosis        | 199                  |
| Coxiella burnetii | 280              | Arboviruses            | 192                  |
| Salmonella spp.   | 258              | Coxiella burnetii      | 177                  |
| F. Tularensis     | 225              | Hantavirus             | 155                  |
| M. tuberculosis   | 194              | Brucella spp.          | 143                  |
| B. dermatitidis   | 162              | Hepatitis B virus      | 82                   |
| VEE               | 146              | Shigella spp.          | 66                   |
| Ch. psittaci      | 116              | Salmonella spp.        | 64                   |
| C. immitis        | 93               | Hepatitis C virus      | 32                   |
| Hepatitis B virus | 82               | Neisseria meninaitidis | 31                   |

rce: Harding, A.L., Brandt Byers, K., Epidemiology of laboratory-associated infections. In Fleming, D.O. and nt. D.L. Biological Safety: Principles and Practices. 4<sup>th</sup> edition. Washington, DC: ASM Press, 2006; 53-77.





| Labs in which Infections Occur                   |           |           |  |
|--------------------------------------------------|-----------|-----------|--|
| Adapted from Pike, 1974; Harding and Byers, 2006 |           |           |  |
| Type of Facility                                 | 1930-1975 | 1975-2004 |  |
| Research                                         | 59%       | 50%       |  |
| Clinical/Diagnostic                              | 17%       | 45%       |  |
| Teaching                                         | 3%        | 0.1%      |  |
| Other or<br>unspecified                          | 21%       | 4%        |  |
|                                                  |           |           |  |
|                                                  |           |           |  |





# Case Study illustrates:

How laboratory infections can occur
I.In this case, probably by direct contact from droplets
2.Should think of agent factors such as infective dose, transmissibility, etc.
'How a risk assessment should be done, taking into account the hazardous factors:

I.The agent (how transmitted)
S.Steps taken in the protocol
Human behavior (touching the face)

'Preventive measures

I.Tmmunization
Proper personal protective equipment (PPE)
B.Biological safety cabinet (BSC) for manipulation of the sample
4.Correct use of the BSC
'Administrative procedures for reporting laboratory-associated infections (LAIs)
I.Reporting procedure
Preview of the case
'Medriation of the protocol
'Retraining
'Laboratory audit

| Location    | Volume/<br>Infectivity              | BSL1/2                                                           | BSL3                         |
|-------------|-------------------------------------|------------------------------------------------------------------|------------------------------|
| Inside BSC  | <5ml and or<br><10°/ml              | Clean yourself                                                   | Decontaminate<br>immediately |
|             | >5ml and or<br>>10 <sup>6</sup> /ml | Consider<br>stopping work.<br>Don't let dry.<br>Leave cabinet on | Stop work etc                |
| Outside BSC | <5ml and or<br><10 <sup>6</sup> /ml | No splashing of<br>personnel?<br>Simple clean up                 | B                            |
|             | >5ml and or<br>>106/ml              | 6)                                                               | 6                            |
| Centrifuge  | any                                 | ()                                                               | ()                           |



- high case fatality rate (~50%)
- cases associated with organism i.d. and plate reading,
- subculturing, preparing suspensions
- CDC report: in 15 of 16 cases work not performed in BSC

### Salmonella spp. (64 symptomatic LAIs)

- many cases associated with proficiency panels, including one case (fatality) in the family of a laboratory worker - common: no obvious breakdown in safe lab techniques - obvious breakdown (1974): child whose mother was a lab worker developed typhoid; mother ate her lunch in the lab after working with S. typhi cultures, then brought her half eaten sandwich home for her son to finish

### Multiple Salmonella typhimurium outbreaks linked to clinical and teaching microbiology laboratory exposure.

1st Occurred August 2010 - June 2011 see:http://www.cdc.gov/salmonella/typhimurium-laboratory/011712/index.html • sickened 109 people in 38 states. 3<sup>rd</sup> outbreak details:-

https://www.cdc.gov/salmonella/typhimurium-07-17/index.html

Illnesses involve a commercially available Salmonella enterica serotype Typhimurium strain used in laboratories

· Strain, commonly used as a control in testing, "isn't known to be unusually pathogenic."

Health officials believe students or lab employees may have carried the bacteria to their homes on contaminated lab coats, pens, notebooks, or other items

Several of the patients are children who live in households with a person who studies or works in a microbiology lab. • Ages range from less than 1 year to 91 years, median age: 24.

- · Sixty-three percent of the patients are female;
- 12% of the patients hospitalized, 1 death reported



| vear | State | Virus (strain, if known)        | Nature of accident   | Result in infection?  |
|------|-------|---------------------------------|----------------------|-----------------------|
| 2005 | CA    | Vaccinia                        | Eye splash           | No                    |
| 2005 | FL    | Vaccinia (rabbitpox)            | Eye splash           | No                    |
| 2005 | CT    | Vaccinia (recombinant WR)       | Needlestick          | Yes (hospitalization) |
| 2006 | PA    | Vaccinia (recombinant WR)       | Needlestick          | Yes                   |
| 2006 | СТ    | Vaccinia                        | Eye splash           | No                    |
| 2007 | IA    | Vaccinia (recombinant WR)       | Needlestick          | Yes                   |
| 2007 | NM    | Vaccinia                        | Animal care facility | No                    |
| 2007 | MD    | Vaccinia (recombinant WR)       | Needlestick          | No                    |
| 2007 | NH    | Vaccinia (recombinant WR)       | Needlestick          | Yes (hospitalization) |
| 2007 | MA    | Vaccinia (recombinant<br>NYCBH) | Needlestick          | Yes (hospitalization) |
| 2007 | MO    | Monkeypox                       | Needlestick          | No                    |
| 2008 | GA    | Vaccinia                        | Animal care facility | No                    |
| 2008 | CA    | Vaccinia (recombinant WR)       | Eye splash           | No                    |
| 2008 | NH    | Vaccinia (recombinant WR)       | Eye splash           | No                    |
| 2008 | VA    | Vaccinia (recombinant WR)       | Unknown              | Yes (hospitalization) |
| 2008 | FL    | Vaccinia                        | Tube leakage         | No                    |





# Laboratory Acquired Infections with Biological Select Agents or Toxins (USA)

Data from Applied Biosafety (2012) 17(4), 171-180. LAI's occur even with the most regulated set of agents!

| Year | Agent                     | Cases | Entity type | Lab Type |
|------|---------------------------|-------|-------------|----------|
| 2004 | Brucella militensis       | 1     | Registered  | BSL2     |
| 2004 | Coccidiosis sp.           | 1     | Registered  | BSL3     |
| 2004 | Fransicella<br>tularensis | 3     | Registered  | BSL2     |
| 2007 | Brucella militensis       | 1     | Registered  | BSL3     |
| 2007 | Brucella militensis       | 1     | Exempt      | BSL2     |
| 2009 | Fransicella<br>tularensis | 1     | Exempt      | BSL3     |
| 2009 | Brucella militensis       | 1     | Registered  | BSL3     |
| 2010 | Brucella suis             | 1     | Exempt      | BSL2     |
| 2010 | Brucella suis             | 1     | Exempt      | BSL2     |



Decontamination of labs, purchase of additional BSC's, retraining of lab staff in shared facility, removal of B.cereus from BSL2 space <u>cost a total of US\$ 633,000!</u>

### Two Q fever LAI's in South Australia, 2009.

Newspaper report: Two SA Pathology employees have contracted Q fever following a breach in laboratory protocol involving the bacterium. A 33-year-old man was diagnosed with the illness on Monday [14 Dec 2009], and has since recovered fully with treatment. A 31 [year-old] woman was diagnosed on Thursday [17 Dec 2009] and is in a satisfactory condition.

# Routes of Exposure and Lab Work

Injestion: eating in the lab, mouth pipetting, transfer of agent to the mouth by contaminated fingers or articles

Inoculation: needlesticks, cuts, animal bites and scratches

Contamination of the skin and Mucous membranes: •Splashes - mouth, eyes, nose ·Contaminated surfaces

Inhalation: numerous procedures that produce aerosols

Exposure to aerosols may be the greatest biohazard facing laboratory workers (Collins)

### Risk Factors for Laboratory Acquired Infections - Slide "borrowed" from Prof Yuen, 2004

- Immunodeficiency a)
- b) Vaccination status
- c) Low opinion of safety programs
- d) Take risks
- e) f) Work too fast
- Lack of awareness of the agent being worked
- Young (17-24) male workers
- g) h) i) Self non-complied change of SOP
- Lack of team spirit and openness in the laboratory
- Lack of oversight of each other (- the director is worse) Draconian policy leading to hiding of accidents
- j) k)
- Incomplete/wrong inventory of infectious samples D



# Resources for LAI's

Sewell, D.L. (1995), LAI's and Biosafety, Clin. Micro. Rev. 8(3) 389-405.

Collins (bibliography of LAIs - 1999):

Public Health Canada MSDS's: http://www.phac-aspc.gc.ca/msds-ftss/index-eng.php

Biological Safety: Principles and Practices (ASM press, 4th Edition, 2006) Chapter 4 "Epidemiology of Laboratory - Associated Infections" Harding and Byers. See also Chapter 7 for LAI's with parasites.